Investigations on the effects of friction modeling in finite element simulation of machining

نویسندگان

  • Pedro J. Arrazola
  • Tuğrul Özel
چکیده

Accurately predicting the physical cutting process variables, e.g. temperature, velocity, strain and stress fields, plays a pivotal role for predictive process engineering for machining processes. These predicted field variables, however, are highly influenced by workpiece constitutive material model (i.e. flow stress), thermo-mechanical properties and contact friction law at the tool–chip–workpiece interfaces. This paper aims to investigate effects of friction modeling at the tool–chip–workpiece interfaces on chip formation process in predicting forces, temperatures and other field variables such as normal stress and shear stress on the tool by using advanced finite element (FE) simulation techniques. For this purpose, two distinct FE models with Arbitrary Lagrangian Eulerian (ALE) fully coupled thermal-stress analyses are employed to study not only the effects of FE modeling with different ALE techniques but also to investigate the influence of limiting shear stress at the tool–chip contact on frictional conditions, which was never done before. A detailed friction modeling at the tool–chip and tool–work interfaces is also carried by coupling sticking and sliding frictions. Experiments and simulations have been performed for machining of AISI 4340 steel using tungsten carbide tooling and the simulation results under increasing limit shear stress have been compared to experiments. The influence of limiting shear stress on the tool–chip contact friction was explored and validity of friction modeling approaches was examined. The results presented in this work not only provide a clear understanding of friction in FEM modeling of machining but also advance the process knowledge in

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulation and modeling of friction welding of stainless steel to aluminum alloy using finite element method and artificial neural network

Aluminum to stainless steel joints are broadly used in industries in order to reduce fuel consumption. While fusion welding is not a suitable method to join these metals. solid state welding, like friction welding (FW), is an effective way to this process. However, risk of intermetallic compounds (IMCs) formation is probable in these welds. In previews investigations formation of FeAl3, Fe2Al5 ...

متن کامل

Simulation and modeling of friction welding of stainless steel to aluminum alloy using finite element method and artificial neural network

Aluminum to stainless steel joints are broadly used in industries in order to reduce fuel consumption. While fusion welding is not a suitable method to join these metals. solid state welding, like friction welding (FW), is an effective way to this process. However, risk of intermetallic compounds (IMCs) formation is probable in these welds. In previews investigations formation of FeAl3, Fe2Al5 ...

متن کامل

Finite Element Modeling and Experimental Study of the Spline Tube Forming

Metal forming processes, compared with machining ones, reduce production steps and increase manufacturing speed in addition to saving raw material. In this paper, forming process of column of a steering mechanism is investigated by finite element analyses and experimental tests; and optimum die design parameters are found. Forming process parameters including die opening angle, bearing length, ...

متن کامل

Numerical and Experimental Investigations on Springback of U-bending of DP600 Steel Alloy Sheet

The most prominent feature of sheet material forming process is an elastic recovery phenomenon during unloading which leads to springback and side wall curl. Therefore evaluation of springback and side wall curl is mandatory for production of precise products. In this paper, the effects of some parameters such as friction coefficient, sheet thickness, yield strength of sheet and blank-holder fo...

متن کامل

Finite Element Modeling and Experimental Study of the Spline Tube Forming

Metal forming processes, compared with machining ones, reduce production steps and increase manufacturing speed in addition to saving raw material. In this paper, forming process of column of a steering mechanism is investigated by finite element analyses and experimental tests; and optimum die design parameters are found. Forming process parameters including die opening angle, bearing length, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009